BD8 Ch. 12 Structure of the Atom Notes Worksheet

Subatomic Particles

J. J. Thomson found the ______, the first ______ particle to be identified.

Subatomic particles are particles smaller than an ______. Today, more than ______. Today, more

The three main subatomic particles are the _____, the _____, and the ______.

	Location	Mass	Charge
Proton			
Neutron			
Electron			

The Nucleus

The nucleus is the	_ of the atom. It contains	_%
of the mass of the atom. However, it's about	100,000 times	
than the entire atom.		
•	le to the size of a in a	
football stadium.		
All protons are	, no matter in which element they are	
found.	,,,,,,,,,,,,,	
Mass		
This unit used to measure subatomic particle	is is called an	

, or amu.

It would take 600,000,000,000,000,000,000 protons to equal a mass of ______ (about the mass of a paperclip).

Neutrons

All neutrons are	
Elements are substances made up of identical	Atoms of
different elements are each different from each	h other.

If all protons are identical, and all neutrons are identical, what makes atoms different from one another?

The number of ______ in the nucleus is what determines what the element is.

Atomic Number

The number of protons in the nucleus of an atom is called the

The atomic number identifies the ______.

Isotopes

The atomic number of an element will never	, which means
that there is always the same number of	in the nucleus of
every atom of that element.	

Atoms of the same element can have different numbers of ______.

_____ are atoms of the same element that have the same number of protons, but different numbers of neutrons.

Mass Number

All atoms have a mass number.

The mass number of an atom is the sum of the ______ and _____ in its nucleus.

To tell one isotope from another, the mass number is given with the element's name. (Example: uranium-235 and uranium-238)

Uranium's atomic number is 92, so how can you tell what number of neutrons each isotope contains? Uranium-235 _____ Uranium-238 _____

Atomic Mass

The atomic mass of an element is the _____ mass of all the isotopes of the element as they occur in nature. This is why the atomic mass of an element isn't usually a whole number.

Problem: The atomic mass of carbon is 12.011. One isotope of carbon is carbon-14. Using the atomic mass of carbon, how can you tell which occurs more often in nature: carbon-12, or carbon-14?

Electrons

In an uncharged atom the number of ______ = the number of protons. This makes the atom neutral.

Electrons _____ move in fixed paths around the nucleus. The whole space that electrons occupy is what scientists think of as the atom. The electron ______ is a space in which electrons are likely to be found. The location of an electron in the cloud depends on how much

The location of an electron in the cloud depends on how much ______ the electron has.

According to modern atomic theory, electrons are arranged in

Energy levels represent the most likely locations in the electron cloud in which an electron can be found.

Electrons with the lowest energy are found in the energy level

______to the nucleus, and electrons with higher energy are found in energy levels ______ from the nucleus.

Each energy level within an atom can hold only a certain number of electrons.

In fact, the ______ arrangement of its atoms is what gives an element its chemical properties.

The ability of an element to bond is determined by the arrangement of the electrons in the ______ energy level of its atoms.

The existence of	, and
	proves that atoms are not unbreakable.